منابع مشابه
Local Multiple Imputation
Dealing with missing data via parametric multiple imputation methods usually implies stating several strong assumptions about both the distribution of the data and about underlying regression relationships. If such parametric assumptions do not hold, the multiply imputed data are not appropriate and might produce inconsistent estimators and thus misleading results. In this paper, a fully nonpar...
متن کاملMultiple Imputation for Missing Data
Multiple imputation provides a useful strategy for dealing with data sets with missing values. Instead of filling in a single value for each missing value, Rubin’s (1987) multiple imputation procedure replaces each missing value with a set of plausible values that represent the uncertainty about the right value to impute. These multiply imputed data sets are then analyzed by using standard proc...
متن کاملMultiple imputation in quantile regression.
We propose a multiple imputation estimator for parameter estimation in a quantile regression model when some covariates are missing at random. The estimation procedure fully utilizes the entire dataset to achieve increased efficiency, and the resulting coefficient estimators are root-n consistent and asymptotically normal. To protect against possible model misspecification, we further propose a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2002
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/89.2.375